double integral x1xy dA r 01 x 01Solution Integrate first wi
double integral x/(1+xy) dA, r= (0,1) x (0,1)
Solution
Integrate first with respect to y: (0 to 1) integral x/(1 + xy) dy = [ln|1 + xy|](0 to 1) = [ln|1 + x*1|] - [ln|1 + x*0|] = ln|1 + x| Now, integrate with respect to x: (0 to 1) integral ln|1 + x| dx <--- use int by parts to solve = [(x + 1)ln|x + 1| - x](0 to 1) = [(1 + 1)ln|1 + 1| - 1] - [(0 + 1)ln|0 + 1| - 0] = 2ln(2) - 1 ˜ 0.386 = [ln|1 + x*1|]  double integral x/(1+xy) dA, r= (0,1) x (0,1)Solution Integrate first with respect to y: (0 to 1) integral x/(1 + xy) dy = [ln|1 + xy|](0 to 1) = [ln|1 + x*1|]](/WebImages/47/double-integral-x1xy-da-r-01-x-01solution-integrate-first-wi-1147361-1761617012-0.webp)
